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Abstract 

A mathematical analysis of the Bjerrum function is carried out. This function 
arises from the Stepwise Equilibrium Model, which is used to describe successive 
complex formation in systems consisting of  free metal ion, free ligand, and all the 
ML i complexes that can form in solution. The appropriate root of the Bjerrum 
polynomial allows the determination of the concentrations of all species present 
in solution, given the initial concentrations of  metal and of ligand, and the equili- 
brium constants governing the system. It is proved that there is only one positive 
root of  the Bjerrum polynomial, and thus that only a single equilibrium state can 
exist. It  is also shown that the positive root of  the Bjerrum polynomial can be 
reliably obtained by Newton's method, but only if the initialization point is properly 
chosen, and that the initial concentration L of ligand is the optimum such point. 
Finding this root is a calculation that typically must be carried out at each itera- 
tion in nonlinear least squares procedures for determining equilibrium constants. 
Finally, the necessary mathematical analysis is carried out to determine the optimum 
initial concentrations of  metal and ligand which maximize the resulting concentra- 
tion of a particular ML i complex. 

1. Introduction 

The determination of equilibrium constants is a fundamentally important part 
of  investigations into the interactions between molecules in solution or in the gas 
phase. A knowledge of the equilibrium constants governing a system permits the 
determination of the concentrations of all species in solution from the initial con- 
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centrations of reactants. Although the equations describing such interactions are well 
kmown, the determination of the set of equilibrium constants governing a chemical 
system is often an extremely difficult problem. 

Methods for determining equilibrium constants have undergone extensive 
development. For reviews, the interested reader should consult Hartley et al. [1] and 
Gaizer [2]. The methods used for simple systems are either graphical or involve the 
solution of relatively simple equations. When the number of equilibria in a chemical 
system exceeds two, grapt~ical procedures lose their precision, and procedures involving 
nonlinear least squares techniques become the rule. These techniques usually require 
considerable computing power, and there has been an enormous effort over the years 
to develop algorithms which wilt yield accurate and reliable values for equilibrium 
constants. However, very little attention has been paid to developing the mathematical 
properties of the system of equations which govern a particular equilibrium problem. 
Such properties can be extremely valuable in the computations that typically must 
be carried out. For example, it was shown by Macleod [3] that for a simple system 
consisting of a weak acid and its conjugate base, the cubic equation which must be 
solved in order to determine the hydronium ion (H30 +) concentration not only has 
a single positive root [4], but that all three roots must be real. The knowledge that 
there are also two negative roots is important in the development of an efficient and 
reliable algorithm for finding the positive solution of the cubic equation. A similar 
approach was used to develop an efficient and totally reliable method for calculating 
the amount of a given ligand bound to several proteins found in serum, as well as the 
free ligand concentration, based on a set of  equilibrium constants determined using 
the Scatchard Model [5]. In that work, a mathematical examination of the equation 
that must be solved not only showed that there is only one meaningful root of that 
equation, but also showed exactly how one should proceed in finding that root by 
Newton's method. Both these examples, although relatively simple, amply illustrate 
the value of any knowledge of the mathematical properties of the equations under 
consideration. 

The nmthematical analyses briefly described below are based upon the classical 
consideration that a chemical system at equilibrium is determined by solving the 
system of equations arising from the mass balance equations and mass action laws. 
Alternatively, Gibbs has shown [6] that satisfying the mass action laws is equivalent 
to minimizing the free energy function, subject to the constraints that the composition 
variables be non-negative and also satisfy the mass balance relationships. Thus, a 
mathematical analysis of  a particular equilibrium problem could proceed from either 
premise. Shapiro and Shapley [7] have addressed the question of the relationship 
between the classical solution of the mass action laws and the minimum in the Gibbs 
free energy function. In particular, they have demonstrated that in general there can 
only be a single minimum to the Gibbs free energy function, and hence a unique set 
of  compositions at equilibrium for a chemical system at a defined temperature. Similar 
results were obtained by Hancock and Motzkin [8]. 
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Although Shapiro and Shapley's work addressed the broad question of the 
uniqueness of the equilibrium state from the perspective of the Gibbs free energy 
function, their work does not give any insight into specific computational methods 
that will permit solution of a particular equilibrium problem. However, starting 
from the Gibbs free energy function, White et al. [9] have discussed the solution 
of complex equilibrium problems using standard numerical techniques as well as 
linear programming methods. Further discussion of this problem can be found in 
[ 1 0 - 1 3 ] .  All of  these methods, based on the free energy function, depend upon 
the availability of the appropriate thermodynamic parameters for the system of 
interest. However, our principal interests lie with systems in aqueous solution, and 
our work is motivated by problems arising in estimating equilibrium constants. Since 
the mass action laws are stated in terms of the equilibrium constants, our efforts are 
focused on the more classical approach using the mass balance equations and mass 
action laws. 

In our efforts to determine equilibrium constants in multi-component systems, 
our attention has been drawn to the mathematical properties of the general set of 
equations defining the stepwise equilibrium model. This model describes the inter- 
action between chemical moities L and M to foma simple complexes of type kiL n for 
various n. The formation of simple inorganic complexes falls into this general case, as 
does the binding of a ligand to a protein, such as the interaction of palmitic acid with 
the protein serum albumin. Interestingly, the model used to describe the stepwise 
formation of polymers from monomers also fits this mathematical model [14]. In 
this paper, our efforts are focused on the calculation of the concentrations of all 
species present in solution from (assumed) values of the equilibrium constants of  a 
system. This calculation is important not only because it yields the concentrations 
of all species present, but also because it is a calculation that typically must be made 
at each iteration in a nonlinear least squares procedure for estimating equilibrium 
constants from experimental data. 

One result of  these efforts is the proof of a theorem which validates some 
earlier approaches taken to determine equilibrium constants, and yields a rapid and 
reliable algorithm for the actual computation of the concentrations of the species 
present. 

A second result of  our investigation of the mathematical properties of the 
system of equations governing the stepwise equilibrium model is the determination 
of the total concentrations of the species M and L which maximize the concentration 
of a given complex ML k for a given set of equilibrium constants. This is important 
for experimental design because it determines experimental conditions conducive 
to observing a particular complex in solution. Thus, if we want to observe this com- 
plex spectrophotometrically, we would choose the set of  initial total concentrations 
which gives the greatest concentration of that complex in solution. 
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2. T h e  s t e p w i s e  e q u i l i b r i u m  m o d e l  

The use of  the stepwise equilibrium model to describe the interaction of  a 
metal ion or protein with a ligand is extremely common in both inorganic chemistry 
and in biochemistry. Interactions such as these can be described by the following 
equilibria expressions*" 

g 1 
M + L ~ ~ M L  K~ = [ML] / [M]  [L] 

g 2 
M L  + L ~ ~ M L  2 K 2 = [ML 2 ] / [ML]  [L] 

g n 
M L n _  ~ + L - .  -- M L  n K n = [ M L n ] / [ M L n _ ~ ]  [L] . 

The K i are the equilibrium constants, and the quantities in brackets are the 
concentrations of  the indicated species. For notational and mathematical reasons, 
it is convenient to introduce an additional equilibrium constant K o , always equal 
to 1, which can be thought of  as arising from the trivial equilibrium expression 

g o 
M --. ~ M, K o =  [MI/[M] . 

We make the convention that  [MLo] = [M], and write a i for the concentration 
[MLi] .  (Thus, a o is the free metal concentration.) Let c be the free ligand concen- 
tration [L],  let x i = K o K1 ,  . . . , K i ,  and let L and M denote the total  ligand and 
total  metal concentrations, respectively. Expressing the concentrations a i in terms of  
the x i and the free concentrations, and writing the two mass balance equations of  the 
system leads to the following system of  equations, which is the mathematical formula- 
tion o f  the stepwise equilibrium model: 

*Note that the activity coefficients of all species are assumed to be invariant with changes in con- 
centration or to be unity, and that the charges on the various species present in solution have 
been omitted for clarity. If the activity coefficients are unity, the K's are thermodynamic con- 
stants, and if the activity coefficients are constant as a function of concentration, the K's are 
~*apparent" equilibrium constants. 
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a. = aoXiC~, i = 1,2 . . . .  n, 
i 

?I 

L = ~ ia i + c, 
i = 0  

n 

M = Z a i .  
i = 0  

It is the mathematical properties of this system of equations that bear investiga- 
tion. 

3. De t e rmin ing  the  roo t s  o f  the  Bje r rum p o l y n o m i a l  

We consider first the problem where the Ki's , L, and M are known, and it is 
desired to solve for c and the ai's. This calculation yields the concentrations of all 
species present, and typically must be made at each iteration in a nonlinear least 
squares procedure for determining equilibrium constants. 

Substituting for the ai's in the above equations for L and M yields 

n 

L = ~ ia o x i c i  + C, and 
i = 0  

n 

M = ~ a o x i c i .  
i=O 

Solving for a o in each of these equations yields 

a o = ( L - c )  i x i c t  
l i=O 

a o = M x . c  ~ . I 

i 

and 

These two equations give 

 L_c ( xici) 
i = 0  

Iq 

= M ~ ,  i x i c i ,  
i=O 
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which in turn gives the equation 

( ZoXiCi) (c+iM-L) = 

The left-hand side is the well-known Bjerrum function, here viewed as a polynomial 
in c. A root c of  this polynomial yields a value for a o via the equation 

a 0 : ( L - c ) /  ~. ixici, 
i=o 

or via 

The other ai's can then be obtained from a i = aoXi ci. 
Thus, the real problem in finding the concentrations of the various complexes 

is to find the desired root of the Bjerrum polynomial. It is often implicitly assumed 
that there is only one root of  chemical interest between 0 and L, and that the root 
found by some variant of Newton's method is the only correct and meaningful one. 
That there is at least one such root is mathematically trivial. However, we are not 
aware of any mathematical proof showing that the Bjerrum polynomial can have 
only one positive root. There is no a priori mathematical reason why there cannot 
be several roots between 0 and L. More than one root would suggest more than one 
possible equilibrium state of  the chemical system being modeled. One of  our principal 
results is that there is exactly one such root, and thus only one possible set of values 
for the equilibrium concentrations of  the various species. Thus, the mathematical 
model allows only one equilibrium state. This result is part of  the following theorem, 
which also gives information crucial in calculating the desired root of the Bjerrum 
polynomial. 

It should be noted that our result for the stepwise model is consistent with 
the results of  treatments based on the Gibbs free energy function, which also conclude 
that there must be a unique equilibrium state [7,8].  

THEOREM 

Let Xo, x 1 . . . . .  x n, L, and M be positive real numbers with n ~> 0. Then the 
polynomial 

n 

p(c) = Z xid(c +iM-L) 
i = 0  
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satisfies the following conditions: 

(1) p(c) has exactly one positive root  r. 

(2) r ~< L. 

(3) The derivatives of  p (c) of  all orders are non-negative for all c ~> r. 

p r o o f  

The proof  will be by induction on n or, equivalently, on the degree of  p(c) ,  
which is n + 1. If  that degree is 1, then p(c) = Xo(C - L), and (1), (2), and (3) are 
clearly satisfied. Now let the degree n + 1 of  p(c) be greater than 1, and suppose 
that all polynomials o f  the form indicated and of  degree less than that of  p(c) satisfy 
(1), (2), and (3). We need this to imply that 

p(c)  = 

n 

xici(c + iM-L)  
i = 0  

satisfies (1), (2), and (3). Since p(O) = -xoL is negative and 

rt 

p(L) = ~ xiLi(iM ) 
i = 0  

is ) 0, p(c) has at least one positive root ~< L. 
Now we need to distinguish two cases, M ~> L and M < L. If  M ~> L,  then the 

derivative 

p'(c) = Z [xiici-l(c+ iM-L)] + Z xic' 
i = 1  i = 0  

is positive for all c >/ O, and hence p(c) has exactly one positive root  between 0 and L. 
It is clear that p(c) satisfies requirement (3) as well. 

I f  M < L,  then L - M > O, and we write 

p(c) = Xo(c-L)+ c 
n 

~. xiei-1 [c + ( i - 1 ) M -  ( L - M ) ]  . 
i = 1  

Let Pi  = x i  + 1 for i = O, 1 . . . . .  n - 1. Then 



242 E.R. Birnbaum, E.A. Walker, Mathematical analysis of Bjerrum function 

Let 

p(c )  = x o ( c - L )  + c 

n - 1  

Z Yici[ c + i M - ( L - M ) ]  . 
i = 0  

q(e) = 
n - 1  

~. ytci[c + i M -  (L - M ) ] .  
t = 0  

Using the fact that L - M is positive, we see that q (c) is a polynomial of the same 
form as p (c). Since the degree of  q (c) is less than that of  p (c), the induction hypothesis 
implies that q (c) satisfies the conditions of  the theorem, which means that q (c) has 
exactly one positive root r, r ~< L - M, and the derivatives of  q(c) of  all orders are 
non-negative for all c ~> r. Note that 

p(c)  = X o ( C - L )  + c q ( c ) .  

Since the derivatives of  q(c) of all orders are non-negative for all c ~> r, it follows 
that the derivatives of  p(c) are non-negative for all c equal to or greater than the 
positive root r of  q(c). Since q(c) is negative for 0 < c < r, the polynomial c q(c) is 
0 at c = 0 and is negative for 0 < c < r. Since r ~< L, adding Xo(C - L) to c q(c) 
yields a polynomial which is negative for 0 ~< c ~< r, satisfies (3) for c />  r, and is 
positive at L. Therefore, the resulting polynomial, which is p(c), has exactly one root 
between r and L, and that root is greater than r. Thus, p(c) satisfies (1) and (2). 
Since p(c) satisfies (3) for c t> r, it satisfies (3) for all c greater than or equal to its 
own positive root. This concludes the proof. 

Since the first and second derivatives of  p(c) are non-negative for all c equal 
to or greater than the positive root of  p(c), Newton's method is ideal for finding 
that root numerically, if the initialization point is taken to be L (see fig. 1). If M >  L, 
then the derivative p'(c) of  p(c) is positive for c positive, but if M < L, then pr(c) 
can attain negative values for positive c. In this case, taking the initialization point to 
be less than L may not lead to a solution at all. However, with a desktop computer 
and the initialization point L, Newton's method will produce in a very few seconds the 
positive root of a Bjerrum polynomial of  degree six. 

The degree of  p(c) is n + 1. For the degree no more than 4, there are formulae 
for the roots of  p(c), but for degree 4 especially, the formulae are cumbersome, and 
it is much easier, and no doubt just as fast and accurate, to find the positive root of 
p(c) via Newton's method. 
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BJERRUM POLYNOMIAL 

1OO- / 

g(c) 

-80 q ' I , 
O 1 2 3 4 

C 

Fig. 1. A plot of the Bjerrum polynomial for n = 2, M = L = 5, 
xt = 5, and x 2 = 10. This cubic illustrates the important character- 
istics of the Bjerrum polynomial, in particular the single root 
between 0 and L, and the positive and increasing slope for c > r. 

4. Max imiz ing  the  c o n c e n t r a t i o n  o f  a c o m p l e x  

We now consider the problem of determining the total concentrations of the 
compounds M and L which maximize the concentration of a particular complex ML k 
for a given set of equilibrium constants. Choosing such total concentrations gives 
conditions conducive to observing that particular complex in solution, and can be 
important in the design of an experiment. 

The specific mathematical problem is to find the relation between L and M, 
purely in terms of the equilibrium constants, that maximizes a k. Then from a value 
of L or of  M, one can choose the values of the other that maximizes a k. We choose 
to express L as a function of M. So, given the quantities x 1 , x 2 . . . . .  x n and M, we 
must find L so as to maximize a k for a given k. Thus, % is a function of L, and we 
need to know which positive L makes a k biggest. From the equations describing the 
stepwise equilibrium model, it is clear that a o is maximum when L = 0. For k > 0, 
we will determine when Oak/OL = 0. This will be done as follows. First we will show 
that for c > O, ~L/3c > 0. That is the difficult part, although it just corresponds 
to the chemically apparent fact that increasing the total concentration of L in- 
creases the free concentration of L. The fact that ~L/~c > 0 and the relation 
~ak/~c = (~ak/~L)(~L/~c)  then shows that ~ak/aL = 0 exactly when ~a~/~c = O. 
Thus, we can find the L that maximizes a k by finding the c that maximizes a k. The 
required L is the one corresponding to that c. 

Of course, it is not clear that there is an L that maximizes %. Indeed, for 
k = n there is no such L, as is intuitively clear from the fact that if L is increased 
indefinitely, the only species present would be ML n and free L. However, for k < n, 
the quantity a k does attain a maximum with respect to L. 



244 E.R. Birnbaum, E.A. Walker, Mathematical analysis o f  Bjerrum function 

The relationship between L and c is given by 

n 

Z x i c i ( c  + iM-L) = O, 
i = 0  

from which we get 

L = c + (M xiici x'ci'l 
i = 0  / i = 0  

L E M M A  

For c > O, OL/Oc > O. That is, L is a strictly increasing function of c when 
c > O .  

Proof 

Let D = ~n=oxiCi , and D'  be its derivative with respect to c. From 

i i L = c + (M x iic X iC 
i = 0  - - i=O 

= c + ( M  
n 

~. x i i c i ) / D ,  
i = 0  

we get 

OL/3c = 1 + (DM 
n 

E x i i 2 c i - 1  

i = 0 
- M  

n 

x i i c iD ' ) /D2 .  
/ = 0  

Therefore, 3L/Oc is positive if 

n n 

D ~ ,  xii2c i -1  -- Z x i i c i D '  
i = 0  i = 0  

n n 

is positive. But this expression is 
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2XiX. Cij2Ci-1 - 2xixj i jcicJ-1 
i,j i,j 

= 2 X i X j c i + j - l j ( j - i )  = 2 X i ) ~ c i + j - l i ( i - - j ) ,  
i,j i,j 

SO 

2 ~ x i x i c i * j - l j ( j - i  ) = ~ 'x ix jc i÷J- ' ( j - i )2  ' 
i,j i,j 

which is positive when c > 0. Therefore, ~L/Sc is positive whenever c > 0. This 
completes the proof. 

From the relation a%/Oc = (3ak/OL)(3L/3c) and the fact that OL/Oc is 
positive whenever c > O, we get that Oak/OL is zero exactly when ~ak/Oc is zero. 
Thus, the L that maximizes a~c is the one corresponding to the c that maximizes %. 
Now, for those k ~> 1, 

f(c) = ak = aoXkCk = M x k e k / ~  x i 
/ j=O 

~ak/~c = [(  ~ x jc i )  Mkxk ck-1 - 

Thus, we need the positive roots of 

c j , and 

C k 
n 

• c j -  2 ]xj 
j=O 

cj 

or of 

(° ) ° XjC j k-c ~ jXjC j - l ,  
/=0  / = o  

g(c) = 
/ ' l  

T. cJ.  
j = O  

If k = n, then g(c) has no positive roots, and indeed it is easily seen that a n converges 
to M as c goes to ~ .  If 0 < k < n, then the coefficients of g(c) have exactly one 
sign change, from positive to negative, namely at that term where j = k + 1. By 
Descartes' rule of signs, such a polynomial g(c) has exactly one positive root. Thus, 
there is only one fiat spot on f(c). Since f (0 )  = 0, f(c) > 0 for c > 0, and f(c) 
converges to 0 as c goes to ~ ,  there is exactly one maximum of f(c) for c > 0. This 
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can be found by finding the unique positive root r of  g(c). The L that maximizes a k 
is then 

L = r + (M x i i r i )  Z x i r i "  
i=0 i=o  

We sum up in the following theorem. 

THEOREM 

Let Ki, i = O, 1 . . . . .  n, be the equilibrium constants andlet x i = K o K 1 . . .  K i. 
Then for 0 < k < n, the relation between the total concentrations M and L which 
maximizes the concentration of  the species M L  k is given by 

L = c + (M x i ic i 
i = 0  t i = O  

where c is the unique positive number satisfying 

t7 

7. ( k - i ) ~cJ  = o. 
i=O 

To carry out computations to find the L maximizing a k requires finding the 
unique positive root r of 

g(c) = 
n 

Z (k -i) xj ci 
j=O 

and evaluating the expression 

r + (M ~.  x i i r i  ) x i . 
i = 0  / i = 0  

To find the positiye root of  g(c) using Newton's method requires care in choosing 
the initialization point. If  k > 1, then the derivative 

?l 

g'(c) = ~. i ( k - j ) x j c J - '  
j = l  
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FUNCTION TO MAXIMIZE A(K) 4 
t 

F(c) 2_20 ' 

I I I I I -.2 0 .2 4 .6 .8 1.0 
C 

Fig. 2. A representative example of the function used to find the 
maximum concentrations of a complex MLt¢. Values of k = 2, 
n = 3, x~ = 5, and x2 = 10 were chosen to illustrate the important 
characteristics of this function, namely the single maximum and 
the single root for positive c. 

of  g(c) has exactly one sign change in its coefficients. Therefore, it has exactly one 
positive root by Descartes' rule of  signs. Since g'(0) = (k - 1)x 1 is positive (still 
assuming that k > 1), the polynomial g(c) has the shape shown in fig. 2. Thus, the 
initialization point for Newton's method must be at a positive number x for which 
g'(x) is negative. Alternately, one could simply initialize at a positive number x for 
which g(x) is negative. 

When k = 1, g'(c) is negative for all positive c, so that one can initialize at any 
positive number. 
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